
MATH5360M

©UNIVERSITY OF LEEDS
2022/2023

Practical 10 - Final Assignment

For your final assignment you should complete all the tasks on this worksheet. Each task asks you to write
a function; in your code you should name your functions appropriately, and provide a docstring, so that it
is clear which part of the assignment each function corresponds to. You should submit all of your work in
a single .py file, which when run, runs the programme described at the end of the final task. You should
also submit a text file explaining in as much detail as you think is appropriate how each of your functions
operates; again, between 50 and 200 words will be appropriate for each part of the assignment, but if you
feel you need to add more detail you are welcome to do so.

Submit by 12midday, Monday 16th January 2023.

Handling mathematical expressions

In this task we are going to build up a programme capable of handling mathematical expressions
involving numbers, letter variables and named functions.

Part 1

Write a function which takes a string as input, and checks whether any brackets occurring in the
string appear as correctly matched pairs of one opening bracket (and one closing bracket). That
is, the brackets in the following four strings are all correctly matched: "()"; "()()"; "(())"

"(()())"; . However, in the following strings, the brackets are not correctly matched: "("; ")(";
"())"; "())(()”. Your programme should output True if all brackets in the string are correctly
matched and False otherwise. We are only considering ordinary round brackets, not any other
kind of bracket.

Hint: If a string contains mismatched brackets, we must have either opened a pair of brackets
which we haven’t subsequently closed, or (looking from the start of the string to the end) tried to
close more pairs of brackets than we have opened.

Test inputs:
Input Expected output

"()" True

"a" True

"(b())" True

"(" False

"()a)" False

"|)" False

"(]" False

"([)" True

"[[" True

"(a(bb)ccc)dddd" True

"(a)bb()ccc" True

MATH5360M

Part 2a:

Write a function which takes a string as input and returns the contents of the first matched pair of
brackets which appear in the string. For example, given the input "Some text (in brackets)"

your function should return the string "in brackets". You should use the function you wrote for
Part 1 to check whether the input string contains mismatched brackets; if it does, print an error
message and return None.

Input Expected output

"(a)" "a"

"()" ""

"abcd" ""

"a (b) c (d)" "b"

"((a) b (c) d)" "(a) b (c) d"

"(a(bb)ccc)dddd" "a(bb)ccc"

"()a)" None

Part 2b:

Write a separate function (perhaps starting with the code from your function in Part 2a) which takes
a string as input and returns the contents of the first pair of brackets, except not including anything
contained within any further nested brackets. For example, given the input "(a(bb)ccc)dddd" your
function should return "accc", and given the input "((a) b (c) d)" your function should return
" b d". Again use the function you wrote for Part 1 to check whether the input string contains
mismatched brackets; if it does, print an error message and return None.

Input Expected output

"(a)" "a"

"((a))" ""

"((a)b)" "b"

"a (b (c) d) e" "b d"

"(a(bb)ccc)dddd" "accc"

"((a) b (c) d)" " b d"

"((a)b" None

Part 3:

Mathematical expressions and well-formed terms

A mathematical expression consists of various terms connected by mathematical operators, for
example the expression 2x+ y has terms 2x and y and the operator +. Of course the term 2x itself
is actually an abbreviated shorthand for 2× x, which contains the terms 2 and x and the operator
×.

We will define a well-formed term in the following way:

MATH5360M

Rule Examples

Any single letter (which we will inter-
pret as a variable, in the mathematical
sense) is a well-formed term

x is a well-formed term;
a is a well-formed term;

Any natural number is a well-formed
term

3 is a well-formed term;
52837 is a well-formed term;

If s and t are well-formed terms, then:
(s+t) is a well-formed term (x+3) is a well-formed term, where s is

the term x and t is the term 3;
(52837+(x+3)) is a well-formed term,
where s is the term 52837 and t is the
term (x+3);

(s-t) is a well-formed term (y-1) is a well-formed term, where s is
the term y and t is the term 1;
((x-3)-y) is a well-formed term, where
s is the term (x-3) and t is the term y;

(s*t) is a well-formed term (2*(y-1)) is a well-formed term, where
s is the term 2 and t is the term (y-1);
((x-(2*x))*y) is a well-formed term,
where s is the term (x-(2*x)) and t is
the term y;

(s/t) is a well-formed term (a/b) is a well-formed term, where s is
the term a and t is the term b;
(1/(x+1)) is a well-formed term, where
s is the term 1 and t is the term (x+1);

Rule Examples

If s is a well-formed term and n is a
natural number greater than or equal
to 1, then:
(s^n) is a well-formed term (x^2) is a well-formed term;

((y*(x-(2*x)))^52837) is a well-
formed term.

Note that we can apply our formation rules in any order. For example, (((x^2)*(x/(y^3)))+1)
is a well-formed term.

Notice that on the left and right of any operator, we either have a single letter variable, a natural
number, or a term enclosed in a pair of brackets. Note also that every individual operator corre-
sponds to a specific left bracket and right bracket. For example, the + operator in the last example
corresponds to the outside brackets: (((x^2)*(x/(y^3)))+1), and the * operator corresponds to
the brackets indicated in blue: (((x^2)*(x/(y^3)))+1)

Task:

Write a function which takes a well-formed expression (as a Python string) as input and returns a
parse tree of that expression as a nested list, according to the following specification:
Parse tree of input:
If the input represents a single-letter variable or a natural number:
Output the input
Else the input is a term enclosed in brackets, containing an operator correponding to the outermost

MATH5360M

pair of brackets, and this operator appears between a left-hand term and a right-hand term (which
may be single-letter variables, natural numbers, or themselves terms enclosed in brackets):
Output a list [operator, left-hand tree, right-hand tree], where operator is a single-
letter Python string containing the operator that corresponds to the outermost pair of brackets in
the input, left-hand tree is the parse tree for the term which appears to the left of the operator,
and right-hand tree is the parse tree for the term which appears to the right of the operator.

Test inputs:
Input Expected output

"52837" "52837"

"x" "x"

"(a+b)" ['+', "a", "b"]

"((a+b)^2)" ['^', ['+', "a", "b"], "2"]

"((a+b)/(374-c))" ['/', ['+', "a", "b"], ['-', "374", "c"]]

"(((x^2)*(x/(y^3)))+1)" ['+', ['*', ['^', "x", "2"],

['/', "x", ['^', "y", "3"]]], "1"]

Part 4:

We are going to extend our definition of a well-formed term to allow us to consider further mathe-
matical functions, by including the following rules: (remember, a well-formed term is just a Python
string of text, it doesn’t include any actual mathematical functionality)

Rule Examples

If t is a well-formed term, then:
exp(t) is a well-formed term exp(x) is a well-formed term;
log(t) is a well-formed term log((a+b)) is a well-formed term;
sin(t) is a well-formed term (sin(1)/y) is a well-formed term;
cos(t) is a well-formed term cos(exp((x/2))) is a well-formed term;

Now, we have four distinct kinds of terms. From before, we have terms which are either a
single letter variable, a natural number, or a term enclosed in a pair of brackets corresponding
to an operator. We now have a fourth kind of term, consisting of a function name followed by a
corresponding pair of brackets.

Task:

Extend your function from Part 3 to meet the following specification:
Parse tree of input:
If the input represents a single-letter variable or a natural number:
Output the input
Else if the input is a function name followed by an opening bracket, with the final character of the
input being a closing bracket: Output a list [function name, argument tree], where function
is the appropriate one of the four possible Python strings exp, log, sin or cos; and argument

tree is the parse tree for the term which appears between the inital opening bracket and the final
closing bracket
Else the input is a term enclosed in brackets, containing an operator correponding to the outermost
pair of brackets, and this operator appears between a left-hand term and a right-hand term (which
may be single-letter variables, natural numbers, or themselves terms enclosed in brackets):
Output a list [operator, left-hand tree, right-hand tree], where operator is a single-

MATH5360M

letter Python string containing the operator that corresponds to the outermost pair of brackets in
the input, left-hand tree is the parse tree for the term which appears to the left of the operator,
and right-hand tree is the parse tree for the term which appears to the right of the operator.

Test inputs:
Input Expected output

"exp(1)" ["exp", "1"]

"(a+sin(x))" ['+', "a", ["sin", "x"]]

"(log(r)^3)" ['^', ["log", "r"], "3"]

"log(log(((2*n)+1)))" ["log", ["log", ['+', ['*', "2", "n"], "1"]]]

Part 5: Symbolic Differentiation

We will have learned at school how to differentiate mathematical functions with respect to a single
variable. From this point forward, we will consider differentiation with respect to the variable x.
This means that any other single-letter variable just represents a constant coefficient. We have the
following well-known derivatives:

Function (f(x)) Derivative with respect to x
(df

dx

)
Any constant (including natural numbers and variables) 0
x 1
xn where n is a natural number ≥ 1 n× xn−1

exp(x) exp(x)

log(x)
1

x
sin(x) cos(x)
cos(x) − sin(x)

Furthermore, given functions f and g, we have the following well-known rules for the derivative
of various combinations of f and g, in terms of their derivatives:

Function Derivative with respect to x

f + g
df

dx
+

dg

dx

f · g f · dg
dx

+ g · df
dx

f(g(x))
dg

dx
× df

dx
(g(x))

f/g
g · df

dx − f · dg
dx

g2

Task:

Use these rules and derivatives to write a function which takes a well-formed term as input and
outputs the term’s derivative with respect to x, as a well-formed term. Here you should interpret *
as multiplication, ^ as raising to a power (note we are not using the Python syntax for raising to a
power), exp() as the exponential function, log() as the natural logarithm, and sin() and cos()

as being the sine and cosine of an angle in radians.
Write a programme including your function which takes an input from the user and prints the

derivative.
Test inputs:

MATH5360M

Input Expected output

"32" "0"

"a" "0"

"x" "1"

"(1+x)" Any well-formed term representing an expression equal to 1
"(x^5)" "(5*(x^4))"

"((x^3)-(x^2))" Any well-formed term representing an expression equal to 3x2 − 2x
"exp(1)" Any well-formed term representing an expression equal to 0
"exp(x)" Any well-formed term representing an expression equal to ex

"exp((x^2))" Any well-formed term representing an expression equal to 2xex
2

"((x^2)*exp(x))" Any well-formed term representing an expression equal to 2xex+x2ex

"log(sin(x))" Any well-formed term representing an expression equal to
cosx

sinx

"log(sin((x^2)))" Any well-formed term representing an expression equal to
2x cos(x2)

sin(x2)

